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Context: As Industrial Cyber-Physical Systems (ICPS) become more connected and widely-distributed,
often operating in safety-critical environments, we require innovative approaches to detect and diagnose the
faults that occur in them.

Objective: We profile fault identification and diagnosis techniques employed in the aerospace, automotive,
and industrial control domains. Each of these sectors has adopted particular methods to meet their differing
diagnostic needs. By examining both theoretical presentations as well as case studies from production
environments, we present a profile of the current approaches being employed and identify gaps.

Methodology: A scoping study was used to identify and compare fault detection and diagnosis method-
ologies that are presented in the current literature. We created categories for the different diagnostic
approaches via a pilot study and present an analysis of the trends that emerged. We then compared
the maturity of these approaches by adapting and using the NASA Technology Readiness Level (TRL) scale.

Results: Fault identification and analysis studies from 127 papers published from 2004 to 2019 reveal a wide
diversity of promising techniques, both emerging and in-use. These range from traditional Physics-based
Models to Data-Driven Artificial Intelligence (AI) and Knowledge-Based approaches. Hybrid techniques
that blend aspects of these three broad categories were also encountered. Predictive diagnostics or prog-
nostics featured prominently across all sectors, along with discussions of techniques including Fault trees,
Petri nets and Markov approaches. We also profile some of the techniques that have reached the highest
Technology Readiness Levels, showing how those methods are being applied in real-world environments
beyond the laboratory.

Conclusions: Our results suggest that the continuing wide use of both Model-Based and Data-Driven AI
techniques across all domains, especially when they are used together in hybrid configuration, reflects the
complexity of the current ICPS application space. While creating sufficiently-complete models is labour
intensive, Model-free AI techniques were evidenced as a viable way of addressing aspects of this challenge,
demonstrating the increasing sophistication of current machine learning systems. Connecting ICPS to-
gether to share sufficient telemetry to diagnose and manage faults is difficult when the physical environment
places demands on ICPS. Despite these challenges, the most mature papers present robust fault diagnosis
and analysis techniques which have moved beyond the laboratory and are proving valuable in real-world
environments.

Keywords: Industrial Cyber-Physical Systems, Faults, Automotive, Aerospace, Avionics, Industrial
Control.
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1. Introduction

Industrial Cyber-Physical Systems (ICPS) are
mechanisms that augment their computing ele-
ments with sensors and electromechanical actuators
that allow them to interact with the physical envi-5

ronment they operate in [1]. By evaluating feed-
back, both from other ICPS they are connected to
and from their local industrial environment, they
perform a wide range of valuable and often haz-
ardous tasks [2]. Varying widely in complexity and10

scale, they are found controlling equipment in air-
craft, automobiles and factories.

ICPS should be thought of as being more than
just computing devices. They form entire systems,
viewed as a collection of seamless entities, including15

their multiple electrical, mechanical and computing
subsystems. This homogeneity makes them fun-
damentally different to the earlier embedded Pro-
grammable Logic Controllers (PLCs) that were first
used on General Motors automotive assembly lines20

in the 1960’s [3, 4]. These devices controlled only
the machinery they were installed or embedded in.
They were seldom connected to other plant equip-
ment and the sensors they used were often simpler
devices such as limit switches, weight sensors or25

strain gauges. In contrast, modern ICPS act with
higher degrees of autonomy than these earlier em-
bedded systems, relying on sensors and actuators
that often incorporate their own local data process-
ing and conditioning. ICPS are therefore able to30

make control decisions based on their perception of
their environment, driven by much deeper interac-
tion with the physical characteristics of the world
they operate in [5, 6]. Earlier embedded systems
seldom featured this degree of complexity and ca-35

pability.
Contemporary ICPS continue to present intrigu-

ing challenges as they have become increasingly
more complex. Widely-distributed and now often
physically-separated, ICPS are being used to create40

the Industrial Internet of Things (IIoT), where col-
lections of discrete devices cooperate intelligently
to perform large-scale industrial tasks [7]. ICPS
differ from Cyber-Physical Systems (CPS) used in
consumer or medical devices primarily in terms45

of their scale [8, 9], security [10, 11] and safety-
critically [12, 13]. ICPS used in Smart Grids rely
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on industry-standard interfaces and sophisticated
communications. They manage reliable power dis-
tribution across wide geographical areas by co-50

operating and co-ordinating the operations of the
devices that control each sub-station. Examples of
advanced ICPS include NASA’s Mars rover Curios-
ity which operates semi-autonomously, controlled
by one of the most remote ICPS ever deployed on55

another planet [14, 15].

Detecting and diagnosing ICPS faults quickly
and correctly has become imperative to ensure they
are fully-operational at all times. We have learnt
how to rely on ICPS more and more to manage60

complicated and often safety-critical tasks. To-
day, undetected failures in ICPS are not just costly:
in safety-critical or hazardous conditions they can
be life-threatening [16, 17]. For example, ICPS
in the aircraft and aerospace sector rely on ac-65

curate readings from sensors to inform guidance,
vehicle health and maintain stable flight control.
They do this with a degree of reliability, precision
and repeatability that human pilots can no longer
achieve alone [18, 19]. Similarly, in the automo-70

tive sector, vehicles have become increasingly re-
liant on large local networks of sophisticated sub-
systems such as anti-skid breaking and fuel-efficient
engine controls [20, 21]. Within each subsystem, in-
formation is gathered using sensors designed to cap-75

ture one or more physical characteristics of the local
environment, both within and outside the vehicle.
The overall operation of a typical ICPS is, there-
fore, reliant on the co-operative behavior of each
of its specialized subsystems, each one dedicated to80

specific aspects of the vehicle’s safe operation and
reliability [22, 23, 24].

1.1. The focus and contributions of this study

We identified, categorized and analyzed fault
identification and diagnosis strategies for ICPS em-85

ployed across the aerospace, automotive and indus-
trial control domains. Our goal was to present a
snapshot of fault diagnosis as it is practiced today.
We surveyed the differences in the approaches that
have emerged in each sector and how they address90

the needs they describe. Our survey provides a
guide to applicable techniques for designers seek-
ing to implement fault identification, diagnosis and
management into their ICPS.

We chose the aerospace, automotive and indus-95

trial control domains primarily because the ICPS
they rely on must operate faultlessly for extended
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periods of time, often in close proximity to hu-
mans [25]. These sectors also exhibit high levels
of integration between their computational cyber100

elements and the sensors that provide the informa-
tion that all operational decisions are made on. For
example, ICPS in automobiles now sense the posi-
tion of highway lane markings accurately, extract
information from signs and determine the relative105

positions of adjacent vehicles.
We were also interested in the similarities and

differences in fault diagnostic approaches that have
emerged in these three safety-critical sectors over
the period we studied. The scope of our study was110

deliberately limited to representative domains that
have become highly-dependent on ICPS to manage
mission-critical tasks. It is in these sectors that we
would expect to find that diagnostics are highly-
advanced and widely-used. However, we chose not115

to include the medical sector in this study. Medi-
cal ICPS have distinctive biological characteristics,
regulatory requirements and a scale that is worthy
of a separate study later. We also excluded cyber-
physical devices in the Consumer Electronics sector120

from our study. They are driving a large and ex-
panding part of the market however they are often
less complex than the ICPS in our chosen sectors
and the tasks they manage are usually less safety-
critical.125

A scoping study was used to map the key
approaches that underpin fault diagnosis in these
sectors and the sources of both theory and case
studies available from practitioners [26, 27]. We
framed our study via three research questions:130

RQ1: What are the most common and widely-
used fault identification and diagnosis techniques
employed in ICPS in the aerospace, automotive
and industrial control domains?135

RQ2: What relative levels of maturity have
the techniques identified in RQ1 achieved when
assessed using a systematic scale that is applicable
to these domains?140

RQ3: What research gaps and challenges in
ICPS fault identification and diagnosis are being
highlighted in the literature surveyed to answer
RQ1?145

This scoping study seeks to provide a thorough
and systematic overview of the fault identification
and diagnosis techniques currently in use in our

sectors of interest. It profiles the diagnostic ap-150

proaches we encountered and the techniques that
are being used in different situations. By applying a
systematic classification to each technique encoun-
tered, we are able to estimate the relative level of
maturity of each approach, highlighting those which155

are being applied successfully in real-world environ-
ments.

1.2. How this paper is organized

Section 2 explores briefly what a ICPS fault
is and the terminology used to describe the var-160

ious stages in a fault management methodology.
Section 3 then details the survey data capture
and analysis protocol our scoping study employed.
While scoping studies do not usually include as-
sessments of the quality of studies uncovered, we165

chose to adapt and employ the NASA Technology
Readiness Level (TRL) as an qualitative scale to
compare the relative maturity of the fault diagno-
sis techniques we encountered [28].

Section 4 presents the results of the scoping170

study, mapping the fault diagnosis methodologies
described in the papers that were included in this
study. Finally, Section 5 presents our conclusions,
briefly examining those studies that demonstrated
the highest TRL. These exemplars discuss fault di-175

agnostic techniques that have moved beyond the
laboratory and are being applied in the real world.

2. Background - what is fault diagnostics?

ICPS bridge the connection between their “cy-
ber” software, sensor and actuator hardware parts180

and the “physical” world they inhabit. Figure 1 il-
lustrates the two distinct classes of devices that me-
diate communication across this divide for a ware-
house package-handling robot. A sensor is a de-
vice that can convert an environmental characteris-185

tic such as proximity, pressure, temperature or light
levels into an electrical signal that can be processed
by a computer [29]. In contrast, an actuator is a
mechanical device that can receive an electrical sig-
nal from a computer and cause a change, often as a190

result of moving something in its environment [30].
Motors are special classes of actuators that create
movement, such as the mechanism that moves the
package off the parcel tray once the robot has ar-
rived at its destination.195

Normal behavior for an ICPS such as this ware-
house robot is to pick up packages, navigate reliably
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Sonar Sensor to 
detect walls and 
other nearby 
obstacles.

Movement Actuator arm, 
controlled by a motor, that 
loads and unloads packages.

Figure 1: Sensors and Actuators for a Warehouse Robotic
Package Handler.

and efficiently to another location, and then unload
its cargo. The robot’s activities rely on receiving in-
puts from its sensors and being able to co-ordinate200

the movements of its actuators to complete tasks
that achieve previously-defined goals. Our example
robotic package handler has pre-defined patterns of
behavior that enable it to traverse warehouse aisles,
locate shelves and deliver packages to specified lo-205

cations. While it is working, it can detect both ob-
stacles and humans, navigating safely around them.

The difficulty inherent in this interaction be-
tween the cyber and physical parts of an ICPS of-
ten results in faults occurring. Any change in the210

way that an ICPS operates that leads to unaccept-
able behavior or degraded performance is defined
as a fault [31]. For example, the wheels of the
robotic package handler might become entangled
with warehouse rubbish from the floor and stop ro-215

tating. If the control program detects this prob-
lem, it can respond with an appropriate behavior,
perhaps stopping and requesting a human for as-
sistance. This sort of situation is not a fault: it is
the ICPS managing its behavior in a way that is220

appropriate. In contrast, not detecting that it can-
not move properly and carrying on regardless is a
fault since the ICPS did not recognize the issue and
change its behavior accordingly. Similarly, failing
to detect the edge of stairs and falling down them225

is unacceptable behavior, possibly due to a faulty
precipice sensor. Lee and Seshia comment that it
is not enough to separately understand both the
computational and electromechanical elements [30].
Rather, it is at the intersection of the cyber and the230

physical that the most challenging fault scenarios
emerge.

2.1. Fault identification, diagnosis and manage-
ment concepts

ICPSDiagnostics System

observe

detect fault

rectification

fault isolation

assessment

monitoring

management

Figure 2: Sequence Diagram of Diagnostic Activities for a
generalized ICPS.

Figure 2 illustrates the activities in a general-235

ized fault management strategy. Fault diagnosis is
primarily the analysis of the activities or interac-
tions of an ICPS while it is being observed oper-
ating within the environment it is deployed in [32].
Milis [33] and Haririchi [34] define Fault Detection240

as the capability of a device to determine the dif-
ference between normal and abnormal modes of op-
eration. This may be an after-the-fault examina-
tion of a system that has failed or a more proactive
monitoring of the system’s behavior, watching for245

issues before they occur. The evidence of a fault is
therefore exhibited as unacceptable behavior or de-
graded performance. Hence, the previous example
of the warehouse robot not stopping and request-
ing assistance is indicative of a fault, either on the250

part of a sensor or the ICPS software. Fault de-
tection is recognizing that something is wrong but
this realization alone does not necessarily catego-
rize or analyze the problem. The purpose of fault
detection is to trigger a response by the ICPS to255

take appropriate action by first recognizing abnor-
mal activity. When faults are detected, the ICPS
could just halt. However that is not always a vi-
able strategy if the task the ICPS is performing is
critical to some party other than itself.260

Detecting faults is the first stage of a Fault Man-
agement Strategy [35]. Detecting a fault should
start a multi-step process that attempts to diag-
nose and potentially correct problems so that the
ICPS can resume operating at optimal levels. This265

implies that the ICPS needs to be able to hold a
dynamic representation of what normal behavior is
so that it can recognize misbehavior.
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Fault management strategies include Fault Iso-
lation, which is the process of accurately identify-270

ing the location of the fault and its nature [34].
This can be difficult to determine reliably in large
systems that contain many interconnected sub-
systems. Hence, fault isolation includes the anal-
ysis of multiple possible fault sites to determine275

the nature of the real, underlying fault. The fault
symptoms presented, or Fault Evidence, often in-
clude secondary system misbehaviors that are the
result of the primary fault but which are not the
root cause. Bradatsch [36] defines fault latency as280

the time between the occurrence of the fault and its
recognition by the device’s fault management sys-
tem.

Once a list of possible fault candidate locations
has been identified, the next step is Fault Assess-285

ment. This examines evidence and seeks to deter-
mine the most likely root locations of the fault, as
the problem may include a compound failure lo-
cated at multiple, distinct points [37, 38]. This
leads to the final stage of the diagnosis, Fault Risk290

Assessment. Not all faults are important enough
to require intervention if the system is able to op-
erate satisfactorily in a degraded condition. Ghad-
hab [39] discusses the use of “limp-home” strategies
for automobiles that allow them to continue to op-295

erate safely in a degraded mode until they can be
repaired.

Mortellec et al. [40] provide a wider perspective
on what an ideal diagnostic system should pro-
vide. Besides being able to uniquely identify the300

true location and nature of a fault, diagnostic sys-
tems must be able to communicate effectively with
other systems to help facilitate fault rectification.
They must deliver their findings rapidly, especially
in safety-critical situations. Finally, it is paramount305

that they must not report false information.

3. Research method

Scoping studies are one method of rapidly map-
ping the key concepts that appear within a research
area [27, 41]. Often smaller in scope than full sys-310

tematic reviews or mapping studies, scoping stud-
ies allow the breadth of coverage and the depth of
the information extracted to be tailored to address
research questions appropriately [42, 43]. Arksey
and O’Malley [27] and Antman et al. [44] both ex-315

plain how scoping studies are an appropriate way to
quickly capture and present both the available in-
formation and the gaps. They can also be used to

focus and inform later literature searches for prac-
titioners when they do not have time to perform320

a thorough initial analysis themselves. Our scop-
ing study protocol follows the four steps of fram-
ing research questions, identifying relevant studies,
analysis and then presentation of the results as out-
lined by Arksey and O’Malley [27] and refined by325

Cacchione [26].

3.1. Step One: Framing our research questions

Scoping studies are also effective where the re-
searchers do not have a single or highly-focused re-
search question that they are seeking to answer [45].330

The research questions detailed in Section 1.1 were
designed to identify, highlight and categorize prac-
tical fault recognition and diagnosis techniques that
have been found to be effective both in laboratory
studies and in the field. Since this scoping study335

examines multiple yet similar sectors with poten-
tially differing needs, understanding the focus and
spread of the challenges and how they are being ad-
dressed should be of interest to practitioners who
are designing their own ICPS.340

3.2. Step Two: Identification of relevant studies

Scopus was used to search for papers that in-
cluded the terms “cyber-physical”, “aerospace”,
“aircraft”, “automotive”, “industrial” and “man-
ufacturing” for the fifteen-year period from 2004 to345

2019. This starting period for the search was chosen
since it coincides with the emergence of the term
Cyber-Physical System. The first use of the term
can be traced to the National Science Foundation
meetings in 2001 that discussed networked embed-350

ded control systems [46, 47]. In 2006, Lee [48] high-
lighted the implications of these discussions about
connecting discrete embedded systems. Prior to
this, Wiener’s earlier pioneering work on cybernet-
ics informed much of the thinking on control sys-355

tems theory, arguably setting the agenda for later
CPS research [49].

3.3. Step Three: Study selection and classification

From an initial pool of 1,700 candidate papers
returned by our queries, we performed a pilot360

study on thirty of these papers. Particular pa-
pers were chosen primarily because they contained
well-written explanations of fault identification and
diagnosis techniques that provided valuable back-
ground information. These were used to create365

an initial set of fault identification or diagnosis
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Table 1: Fault Identification and Diagnosis Classification
Categories.

Category Example Sub-Categories

Physics-Based
Modeling
approaches

Kalman Filters, Markov
Models, Fault Trees, Other
Stochiometric processes, Model
Validation/Invalidation,
Monitor-based oracles

Data-Driven AI
and Machine
Learning
approaches

Artificial Neural Networks,
Machine Learning, Fuzzy
Logic, k-Nearest Neigbour, Big
Data/Data Mining

Knowledge-based
approaches

Bayesian Decision Theory,
Binary Trees, Petri nets,
Network Message Analysis,
Expert Systems

approach classifications that identified both broad
conceptual differences and a list of specific tech-
niques applicable to those approaches. Table 1 lists
these categories. RQ1 asks what the nature of fault370

identification and diagnostics is within our chosen
domains. The broadest primary classifications that
emerged divided the approaches into three high-
level categories that helped to delineate the research
activity. We encountered Physics-Based Model-375

Driven diagnostics, Data-Driven Model-Free Arti-
ficial Intelligence (AI) techniques and Knowledge-
Based graph approaches. Hybrid techniques that
blend aspects of these approaches were also en-
countered. The similarities and differences between380

these broad classes are profiled in more detail in
Section 4.

To examine the specific fault-finding methods
found within our three primary approaches, sub-
categories were created to identify the characteris-385

tics of each technique. Beyond these classifications,
trends such as Predictive diagnostics or prognostics
became of particular interest to us since this ap-
proach featured more widely than we initially ex-
pected. The complete list of studies, classified ac-390

cording to these category codes, is available via this
link [50].

Our publication sources included peer-reviewed
journal papers, conference papers and open-access
journals. Outside of the academic databases, we395

also sought technical publications and position pa-
pers written by industry-based authors with cur-
rent, practical experience in their field. Exam-
ples include automotive-industry papers from SAE
International (https://www.sae.org) and aerospace400

papers written by NASA researchers or their indus-
try partners (e.g. Lockheed, Boeing). While the
papers published by non-academic sources such as
SAE were not necessarily peer-reviewed, they often
contained detailed results from specific case stud-405

ies. Arksey and O’Malley stress the importance of
including such “grey matter” in scoping studies.

Our minimum inclusion criteria for a study re-
quired it to present and explain the fault identifica-
tion or diagnosis approach that was being applied.410

We also sought papers that included case studies
demonstrating the effectiveness of their techniques.
Many papers were excluded because they only men-
tioned “faults” or “diagnosis” as an aspect of the
nature of ICPS without presenting specific exam-415

ples.

3.4. Step Four: Analyzing and Presenting the Data

During the first phase of the analysis, the classi-
fication categories allowed us to perform a thematic
analysis [51, 52]. Each of our categories and sub-420

categories represent a technique or approach used
or proposed by a practitioner as a way of identify-
ing, diagnosing or rectifying a fault [53]. The anal-
ysis also included examining where diagnostic re-
search is focused in each sector and is presented in425

Figures 5, 6 and 7.

Scoping studies do not usually attempt to assess
the quality of the studies uncovered [26]. However,
we chose to adapt and apply a qualitative scale dur-
ing the classification phase to rank the relative level430

of maturity of the diagnostic techniques we found.
Each study was evaluated using the NASA Tech-
nology Readiness Level scale [54, 55]. This is a sys-
tematic metric for assessing how mature a partic-
ular technology is that is now widely used in both435

aerospace and defense for technology planning. The
TRL has been progressively refined since the 1980’s
through its use at both NASA, ESA and the US
military [28, 54, 56]. It is now embodied in the
standard ISO 16290 [57]. In 2014, the European As-440

sociation of Research & Technology Organisations
(EARTO) identified an increased use of the TRL
amongst its members as a planning tool to manage
innovation [58].

RQ3 sought to identify research gaps, especially445

those exhibited amongst the most promising ap-
proaches. The TRL provide criteria for assigning
a classification between TRL 1, representing basic
principles being observed or reported through to
TRL 9, characterized by technologies proven in real450
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environments that are ready for widespread adop-
tion. We calibrated our fault diagnostic TRL de-
scriptions using the approach of Terrile et al. [59].
They note that the relative TRL steps are not lin-
ear with the steepest steps being in the range TRL455

6 to 8. Section 5 details the four divisions we chose
to classify studies into an appropriate range. The
granularity of the resulting TRL categories allowed
us to distinguish between studies that were purely
theoretical and those that were profiling fault di-460

agnostic techniques that are being applied in live
environments. Table 5 illustrates the fault diag-
nostic level characterizations we adapted from the
NASA categories.

By the end of the classification and analysis465

phases we had identified fourteen studies that could
be ranked at the highest TRLs between 7 and
9. These report mature, field-proven fault-finding
and diagnostic strategies that have been deployed
in production environments. In those papers, we470

should expect to see state-of-the-art exemplars that
detail how ICPS respond to and recover from fault
situations they encounter.

3.5. Threats to validity

In scoping surveys such as ours, the primary475

threats to the validity are our choice of which
papers to include and our thematic classifications.
Surveys are by definition secondary studies that re-
port broad, summarized characteristics of primary
studies, the source papers published that present480

research about an area of interest [60]. As distinct
from Systematic Literature Studies (SLS) that
provide highly-detailed evaluations of a smaller set
of papers [61], scoping studies show where research
activity is concentrated and what aspects of a topic485

are attracting interest, often examining a larger
number of papers in less depth.

Internal validity is concerned with the risks that
might lead to an incorrect conclusion [62]. This490

was partially mitigated during the analysis phase
by ensuring that each primary paper was initially
scanned to determine if it did indeed contain one
of our classification classes. For some classes, a list
of appropriate synonyms was built iteratively. Our495

inclusion criteria for a paper included a check to see
if groups of related terms were present. The clas-
sifications defined in Section 3.3 such as “Model-
Based” were expected to show up where models
were discussed. However, within the same paper,500

the classification of “Model-Free” was expected to

be applicable when discussions featured AI, Neural
Networks, Markov approaches or Data-Driven tech-
niques. Intellectual property restrictions on what
can or cannot be published may also be a contribut-505

ing factor to the amount of detail that can be pub-
lished about implementations. This was considered
when evaluating the relative TRL across sectors.

4. Diagnostic Techniques in Industrial CPS

Examples of fault identification and diagnostic510

methods examined initially during the pilot study
were described by authors as having evolved along
three primary pathways: Physics-Based modeling
and analysis frameworks, Data-driven or Model-free
AI techniques, and Knowledge-Based graphical ap-515

proaches [63]. While classifying our studies, we also
identified hybrid approaches which blend aspects of
these methods.

4.1. Physics-Based, Model-Driven Diagnostics

Modeling is used by designers to gain a deeper520

understanding of a system. By creating models
that imitate the physical characteristics of the ICPS
components, they can explore the interaction the
sensors and other physical devices have with the
cyber parts of the ICPS [30]. Physics-Based Mod-525

eling techniques for diagnostics rely on consistency
checks against these models. These detect the dif-
ferences between the telemetry captured from the
live ICPS and the values predicted by the model.
Table 2 summarizes physics-based modeling diag-530

nostic techniques across our survey domains.
Consistency checks use data captured by ob-

servers who filter the individual readings to distin-
guish between noise caused by telemetry errors and
values that indicate faulty behavior [118]. These535

differences will often be small but seldom non-zero
when the ICPS is performing within acceptable tol-
erances [21]. Techniques for determining when an
aspect of a model is invalidated were discussed in
48% of papers, especially in the industrial control540

domain. Both Kalman Filters and Markov Models
were discussed as ways of recognizing model invali-
dation. These techniques implement observers that
can process sequential measurements that vary over
time. Kalman Filters are more applicable when the545

range of possible readings is highly-linear. They ap-
ply recursive algorithms where weighted-averages
are used to estimate the next value. They work
well in noisy environments that produce sequences
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Table 2: Physics-based Modeling fault identification and diagnosis techniques across all sectors.

Technique Aerospace Automotive Industrial All Publications

Kalman Filters 23% 0% 14% 13% [23] [64] [65] [66] [67] [68] [69] [70]

Markov models 17% 8% 9% 11% [39] [65] [19] [71] [72] [73] [74] [75] [76]

Fault Trees 17% 19% 5% 14% [22] [77] [78] [79] [63] [80] [81] [12]
[82] [83] [84] [85] [74] [86] [87]

Model invalidation 43% 41% 64% 48% [88] [8] [89] [90] [91] [64] [77] [78] [79]
[63] [80] [81] [92] [93] [94] [95] [71] [96]
[97] [98] [99] [100] [101] [102] [103]
[104][105] [14] [106] [107] [108] [109]
[110] [111] [112]

Monitor-based Ora-
cles

10% 11% 9% 10% [8] [113] [100] [114] [115] [116] [69] [117]

of unreliable readings. Zolghadri et al. describe an550

implementation of a Kalman filter to detect jam-
ming of a flight control surface by filtering the er-
ror signal before it is processed by the on-board
avionics [68]. The authors explain how the num-
ber of sensors providing input to the model affects555

both the design and worst-case performance. Tun-
ing the model parameters requires trade-offs against
the real-time capacities of the diagnostic systems
that rely on the model. Shraim et al. discuss fault
management for quadrotor unmanned vehicles to560

improve rotor positioning accuracy [23]. Unmanned
Aerial Vehicles (UAV) require real-time fault toler-
ance since they now rely on autonomous, sensor-
driven stability control that is no longer managed
entirely by the pilot. The models used have to take565

into account the complex aerodynamic character-
istics of the UAV. Dearden et al. discuss similar
aspects of autonomous operation, describing fault
diagnostics for Mars Rovers where Kalman filter-
ing provides situational awareness to indicate fault570

conditions [75]. They contrast the number of sen-
sors required to manage rover operations with the
low computational power available to perform fault
identification using multiple sub-system models.

In contrast, Markov models are used to model575

non-linear, randomly changing systems with dis-
crete states. A dynamic model is Markov or has the
Markov Property if the future state of a system de-
pends only on a limited number of previous states.
Markov Chain and Markov Decision processes rely580

on observing the full set of values or states for the
aspect of the ICPS that is being diagnosed. In con-
trast Hidden Markov Models operate where the se-
quential state of a system is not fully observable.
Kunst et al. profile damage propagation through585

ICPS using Hidden Markov models [19]. Similarly,

Windmann and Niggeman [65] and Ribero et al.
both apply Markov Models to monitor industrial
processes and identify faults as they propagate.

Fault Trees are a way of modeling all reasonably-590

probable fault scenarios [22]. They are tree struc-
tures that facilitate a top-down, systematic ap-
proach to identify chains of possible faults. Logical
operators can be applied to nodes to identify likely
fault pathways. Fault trees are usually considered595

to be knowledge-based approaches but they were
most often encountered in studies that employed
hybrid approaches. Mohre et al. demonstrate cor-
relations between fault tree nodes and composi-
tional safety analysis models [12]. Kassmeyer et600

al. apply fault trees to track fault scenarios across
multiple automotive feature variants [86].

Across all sectors, a wide range of specialized
Model-Invalidation approaches were encountered,
both theoretical and in-use. Provan [88] discusses605

how acceptable inputs can be modeled, an impor-
tant pre-requisite to detecting misbehavior. Moni-
tors [117] are code within a fault identification sys-
tem that is responsible for detecting anomalous sit-
uations or behavior. Similarly, Monitor-Based Ora-610

cles provide ways of both capturing and evaluating
possible fault occurrence [8, 113, 100].

Formal modeling languages including the Archi-
tecture Analysis & Design Language (AADL) [119]
and Modeling and Analysis of Real-time and Em-615

bedded Systems (MARTE) [120] model ICPS dur-
ing their design phases. AADL originated in the
aerospace sector to model embedded systems and
has now found wide use in the automotive domain.
MARTE extends the UML to provide similar ca-620

pabilities. Huang et al. [121] describe a simulation
platform modeled in AADL that allows transient
faults to be evaluated. Khlif and Shawky demon-
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strate how to use AADL to design co-simulations
that are easier to diagnose later [102]. Shulte pro-625

poses a state machine architecture for fault detec-
tion based on SysML [22]. However, no papers in
the survey discussed production ICPS implementa-
tions that employed either AADL or MARTE mod-
els from the design phases directly. Procter and630

Feiler present an introduction to the the AADL
EMV2 Error Library where they discuss the use
of an error ontology during modeling [122]. We
searched the literature for examples of the use of
EMV2 in production fault diagnostic systems be-635

yond the design phase but found few applicable ex-
amples. Lu et al. discuss redundancy approaches
using AADL and EMV2 however their work does
not demonstrate how to apply their fault trees in
a production, real-world example [123]. Similarly,640

Zhang et al. discuss the design of fault tolerant
systems using EMV2, but it is applicable only to
early-stage modeling [124].

Creating and maintaining models is labor-
intensive. Many of the techniques rely on detect-645

ing situations where a model is invalidated. How-
ever, Milis et al. [33] highlight the amount of ef-
fort needed to calibrate models. Provan [88] also
discusses two practical impediments to effective
model-based diagnosis: the failure to integrate di-650

agnostic modeling early enough in the requirements
process and ambiguities in the models themselves at
run-time.

4.2. Data-Driven fault diagnostics

Data-Driven diagnostic techniques employ train-655

ing and learning to forge a representation of the
system’s behavior [21]. Unlike Physics-Based mod-
els, Data-Driven fault detection does not rely on
the existence of pre-built models. This approach is
preferred when the ICPS can provide telemetry that660

contains enough information to distinguish between
either normal or degraded operations. AI fault di-
agnosers make sense of that information by using
discriminating logic that copes with the changes
seen in the ICPS as they occur. This ability to make665

intelligent decisions distinguishes AI from machine
learning, which involves ICPS learning without be-
ing explicitly programmed. Milis [33] discusses cog-
nitive agents that apply expert reasoning to mimic
the behavior of human experts.670

Artificial Neural Networks (ANN) [131, 11, 127]
and pattern-recognition algorithms [144] are illus-
trative of data-driven techniques. Since they do not
rely on static, pre-built models as reference points,

they remove the need to keep the model up-to-date675

as the system evolves. Data-Driven diagnostic sys-
tems learn behaviors through training. Detection
logic allows them to compare current values with
previously learnt values [101]. Hence these Model-
Free methods do not have to completely understand680

the underlying architecture of the system being ex-
amined [132].

Data-Driven approaches often scale better than
Model-Based techniques [9, 8]. As long as sufficient
computational resources are available, Data-Driven685

techniques work as effectively with a large num-
ber of sensors as they do with a few [132]. Since
they construct knowledge representations dynami-
cally, they are often easier to update than formal
models [133].690

Unlike Model-Based methods, Data-Driven ap-
proaches do not assume the probabilistic distribu-
tions of sampled values that Markov processes rely
on [9]. Similarly, AI methods, including machine
learning, do not rely on processes being stochastic695

or random. The trade-off is that while Physics-
Based models are labor-intensive to create, model-
free techniques require large example data sets
to train the observers [125, 126, 127]. Iverson
et.al [132] explain that for avionic ICPS, large vol-700

umes of archival sampled values are collected during
routine operations that are can be used for training
neural networks.

Fuzzy logic employs truth values that are real
numbers between zero and one rather than being705

boolean [13, 38, 147]. This allows decisions to
be made about non-numerical or imprecise data
from ICPS, stored in structures called fuzzy sets.
These sets represent partial truths and decisions are
made by arriving at a consensus. Fuzzy logic algo-710

rithms are able to re-evaluate thresholds for situa-
tions where values are expected to change dynam-
ically as the system is being observed. Song [148]
discusses recognizing faults using threshold predic-
tions. Each sampled value is checked to see if it715

falls within a range defined by the previous value
read.

Condition monitoring allows Data-Driven fault
observers to obtain real-time data about the ICPS
they are monitoring. These data points replace720

the reference values that pre-built Model-Based so-
lutions rely on since AI and machine-learning ap-
proaches are model-free [9]. Lee et al. [2] and Fleis-
chmann et al. [152] describe these techniques in
terms of system health monitoring. Where devi-725

ations from the norm are observed, the result is
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Table 3: Data-driven A.I. Model-Free fault identification and diagnosis techniques across all sectors.

Technique Aerospace Automotive Industrial All Publications

Artificial Neural 54% 50% 47% 50% [33] [11] [125] [126] [127] [21] [128]
Networks [129] [130] [131] [128] [132] [133] [134]

[135] [136] [137] [138] [139] [140] [141]

Machine Learning 38% 17% 18% 24% [9] [142] [24] [21] [133] [134] [143]
[144] [145] [146] [139]

Fuzzy Logic 8% 25% 18% 17% [13] [38] [147] [148] [138] [135] [149]

Big Data 8% 0% 18% 10% [150] [151]

Condition Monitor-
ing

8% 8% 24% 14% [9] [2] [152] [89]

similar to the model-invalidation discussed earlier.
Wang et al. discuss this in the context of cloud
computing and predictive maintenance [89].

Wang et al. [153] caution against over-reliance730

on AI approaches. They suggest that given the
complexity of some fault scenarios, the conclusions
drawn by data-driven systems may not be suffi-
ciently robust enough to be free of false positives
and negatives. However, Iverson et al. profile fault735

finding for the International Space Station (ISS), re-
porting that when a large amount of nominal data is
available, Data-Driven systems can become highly
effective at detecting anomalies [132].

4.3. Knowledge-Based approaches740

Knowledge-Based approaches are applicable
where large amounts of historical data are available.
The underlying dependencies that define the system
are derived from these sources using a range of tech-
niques. All fault diagnosis systems need to observe745

real-time data, basing their evaluations on either
qualitative or quantitative aspects of the teleme-
try. However, only knowledge-based approaches
utilize significant amounts of historical data to in-
form their classifiers [2]. Unlike Data-Driven AI750

approaches, Knowledge-Based methods do not re-
quire pre-classified training sets. Rather, they mine
the historical data using statistical methods. Chen
et al. explain the value of historical information
gathered from experts in building knowledge bases755

to inform current fault diagnoses [38].
The resultant dynamic models they construct are

represented using dependency graphs. Petri nets
are directed bipartite graphs where nodes represent
discrete fault events that may occur. The graph760

arcs define possible transitions between states [158,
159].

Bayesian Belief Networks are knowledge-based
directed graphs that model probabilities [38, 154].

Each node represents a step in a cause and effect765

chain with a conditional probability. While observ-
ing, the fault system updates the probability at a
node when new information is available. Hence,
Bayesian networks can provide both diagnostic and
predictive evaluations.770

Binary Decision Diagrams are directed acyclic
graphs. Waszecki et al. [156] encode observation
patterns extracted from messages exchanged by au-
tomotive ECUs to capture fault scenarios that can
be evaluated during diagnosis. Network message775

analysis also complements other knowledge-based
approaches, either as a carrier of fault messages or
as an indicator of misbehavior [148]. Schweppe et
al. [160] discuss the Automotive Keyword Proto-
col ISO 14230:2000 [161], a widely-accepted stan-780

dard for analysing faults via network messages ex-
changed over a vehicles CAN bus. Pons et al. [157]
outline a similar approach using Causal Graphs
rather than Binary Decision Diagrams.

4.4. Hybrid fault diagnostic approaches785

Hybrid approaches that blend techniques from
any of the three broad approaches were encoun-
tered in 14% of the papers but featured in 19%
of all industrial control studies. Hybrid techniques
skewed the overall ratios of our three primary cat-790

egories since practitioners can adopt any combina-
tion of methods to create their fault identification
and diagnostic methodologies. Figure 3 illustrates
the spread of Hybrid approaches across our three
domains. Lee et al. [89] employs Model Invali-795

dation from the Physics-Based Modeling category
with Condition Monitoring from the Data-Driven
AI category in an intelligent manufacturing sce-
nario. This allows their system to analyze and pre-
dict faults from patterns shared via a cloud-based800

system. The system is implemented using intel-
ligent agents. Chen et al. [38] combine Bayesian
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Table 4: Knowledge-Based fault identification and diagnosis techniques across all sectors.

Technique Aerospace Automotive Industrial All Publications

Bayesian Networks 0% 17% 43% 31% [91] [38] [154] [155]

Binary Decision
Trees

0% 33% 0% 15% [156] [157]

Petri nets 0% 0% 43% 23% [158] [159]

Network Message
Analysis

0% 16% 29% 62% [156] [160] [148] [143]

networks with Fuzzy Logic to diagnose faults in au-
tomotive braking systems while Banerjee et al. [135]
profiles a system with an amalgam of Fuzzy Logic805

Data-Driven predictors and Model-Based statistical
data.
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Figure 3: Hybrid and Predictive Approaches across all sec-
tors.

Using multiple approaches in this way allows
practitioners to apply the most appropriate tech-
nique to different aspects of an ICPS. Rizzoni et810

al [162] discuss how both model-based and neural
network techniques facilitated the development of
on-board diagnostics and fault monitoring to mea-
sure vehicle emissions in automobiles. They trace
the motivation for continuously assessing emission815

compliance in each vehicle back to the Califor-
nia Air Resource Board (CARB) requirements that
came into force in 1991. Each vehicle is required
to monitor its own emissions to ensure compliance.
That required neural network approaches to facili-820

tate the tasks of data capture and sensor filtering
followed by model invalidation to test compliance.

4.5. Predictive Diagnostic techniques

Predictive Diagnostics or Prognostics is the abil-
ity to detect the signs of an impending fault be-825

fore a failure occurs and to estimate when it might
happen [136]. Figure 3 suggests that the ability to
predict ICPS faults in advance is of interest in all
three domains. Predictive Diagnostics becomes fea-
sible when it is possible to both capture and process830

large amounts of high-fidelity data about the oper-
ation of an ICPS and recognize the fault symptoms
in-advance. Janasak and Beshears [163] state that
one aim of European air carriers is that by 2050,
all flights should arrive within one minute of their835

scheduled time. Current delays and disruptions can
be up to fifteen minutes due to undiagnosed faults,
an issue that better predictive capabilities might
alleviate.

4.6. Overall trends in the data840

In each sector, there is an emphasis on the de-
velopment of smart sensors and the conditioning of
the sensor data using a range of techniques such as
Kalman Filters or Markov models. Coupled with
that, the representation of ideal values or behav-845

ior was described using either models or dynami-
cally using AI data-mining techniques. Once a def-
inition of what is normal can be determined, de-
viations from expected values or behaviors can be
detected. Artificial Neural Networks and Machine850

Learning were evidenced as alternatives to Model
Invalidation in the Data-Driven AI category. How-
ever, the widespread use of hybrid techniques in
different parts of the ICPS reflects the complex-
ity of the systems being profiled: no single tech-855

nique for fault recognition and analysis predomi-
nates or is sufficient for all needs. The predom-
inance of Data-Driven techniques in aerospace is
in contrast to the lack of evidence for the use of
Knowledge-based approaches in that sector while860

Network Message Analysis was a technique pro-
filed in 29% of the industrial studies that employed
Knowledge-based approaches. Those contrasts are
explored more deeply in Section 5 where we exam-
ine the most mature techniques in more detail.865
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Table 5: Adapting the NASA Technology Readiness Levels for Assessing Fault Diagnosis.

TRL NASA categorization Proposed Fault categorization

9 Actual system ”flight proven” through successful
mission operations.

Actual fault diagnostic system proven through
successful identification and classification of real
faults in a production environment.

8 Actual system completed and ”flight qualified”
through test and demonstration (ground or
space).

Actual fault diagnostic system qualified through
test and demonstration in a production environ-
ment.

7 System prototype demonstration in a space envi-
ronment.

Functioning prototype demonstrated in a produc-
tion environment.

6 System/subsystem model or prototype demon-
stration in a relevant environment (ground or
space).

Functioning prototype demonstrated finding
and/or diagnosing faults in a relevant environ-
ment beyond the laboratory.

5 Component and/or breadboard validation in a rel-
evant environment.

Creation of a breadboard and/or software valida-
tion that can search for and/or identify faults in
a relevant environment.

4 Component and/or breadboard validation in a
laboratory environment.

Creation of a breadboard and/or software valida-
tion that can search for and/or identify faults in
a laboratory environment.

3 Analytical and experimental critical function
and/or characteristic proof-of-concept.

Proof-of-concept experiment with an appropriate
simulation of the fault environment.

2 Technology concept and/or application formu-
lated.

Concept and technology to perform detection
and/or diagnosis proposed, including a mathe-
matical formulation.

1 Basic principles observed and reported. Basic fault detection or diagnosis principles ob-
served and reported.

5. Investigating mature fault diagnostic
techniques

RQ2 asked what levels of maturity the diagnos-
tic techniques adopted in each sector have achieved.
The TRL fault classifications we developed for our870

study are shown in Table 5 in parallel with the
matching NASA descriptions.

Mankins [55] explains that each level in the TRL
scale represents a different maturation of the tech-
nology or methodology. Heder [164] notes that the875

TRL has drawn criticism for its use outside of the
environment it was originally designed for, explain-
ing that in the European Union the approach has
not always been tailored properly for specific dis-
ciplines. However in NASA the concept of “flight-880

readiness” was already deeply ingrained in their cul-
ture [165]. Adapting this concept to machinery to
establish what stage of technological readiness it
has reached was a natural step within their con-
text. We considered this when designing our study,885

carefully crafting our adaptations of the individual
level descriptions to ensure we stayed true to the
intent of the TRL.

Assessing the maturity of a technological ap-

proach requires a careful evaluation of the context890

that it is being trialled or applied in. Our TRL cat-
egories are divided into four distinct groups. Stud-
ies classified as TRL 7 to 9 represent the most ma-
ture implementations. They provide a fascinating
glimpse of techniques which are either close to or895

fully operational in live production environments.

Studies from TRL 5 and 6 provide evaluations
from trials performed in highly-realistic environ-
ments beyond the laboratory. They often use case
studies to illustrate how the diagnostics will work in900

particular situations. In contrast, studies at TRL
3 and 4 present functioning prototypes that are be-
ing evaluated in either a laboratory or simulated
environment.

Levels 1 and 2 categorize fault identification and905

diagnosis techniques that are purely theoretical or
are presented with a formal mathematical treat-
ment. Papers at this level do not report concrete
outcomes from case studies or field trials.

Figure 4 highlights the TRL maturity levels910

we observed across all our domains of interest.
Amongst the survey papers are studies of fault
identification and diagnostic techniques that have
moved beyond the laboratory and are being applied
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Figure 4: Technology Readiness Level by Sector

in real-world environments. In these papers, we915

should expect to see state-of-the-art exemplars that
detail how ICPS respond to and recover from fault
situations they encounter. The papers we classified
at TRL 7 and above present evaluations of how well
these techniques detect and analyse faults and why920

these approaches were adopted.

5.1. Studies from Aerospace and Avionics

Figure 5 highlights where the diagnostic research
is focused in the aerospace sector. The research fo-
cus on flight control, high-dependability and predic-925

tive fault management aligns with the observations
from the studies at the highest TRL discussed in
this section.
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Figure 5: Where diagnostic research is focused in the
aerospace sector.

Benowitz [117] profiles the Fault Protection En-
gine currently used by the Mars Curiosity rover.930

Since the rover is too far away to rely on exter-
nal systems for assistance, the fault protection en-
gine has to proactively manage faults within a large
number of interrelated subsystems autonomously.

Earlier rover designs implemented discrete fault935

management within each subsystem. On Curios-
ity, the architecture implements monitors, code
within each module whose responsibility is to recog-
nise anomalous behavior. Each module has spe-
cific knowledge of the subsystem they are operating940

within that informs their judgements while filtering
sensor readings. Monitors signal problems by rais-
ing an error flag. As well as detecting faults, they
maintain a count of the occurrences that is later
used by the fault protection engine to ascertain how945

persistent or serious the fault is.

Benowitz explains that error flags are latched but
never cleared by the ICPS module-level monitors.
This allows the fault protection engine to manage
the overall health of the rover by polling in its own950

time, making decisions without being flooded by
messages from subsystems. The fault engine main-
tains a model that contains a response that is ap-
propriate to each situation the monitors are sig-
nalling. Curiosity has over 1,000 monitors operat-955

ing at any one time. Since the rover may be per-
forming any number of different tasks at any time,
ranging from landing to exploration, fault manage-
ment has to be contextual.

Curiosity’s Model-Based approach is in contrast960

to the hybrid Model-Based and Data-Driven ap-
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proach employed by Zolghadri et al. [68]. They
profile the flight surface control systems they de-
veloped for the Airbus A380. Like Curiosity, their
fault management is situation-aware. They note965

that fault signatures are often difficult to detect
when an aircraft is parked or taxiing, or when the
data rates from sensors are low. Their approach
calculates residuals, the result obtained by compar-
ing the current servo positions with the estimated970

position predicted by the model. They tune the
sensitivity of Kalman filters to establish a trade-off
between reliably detecting signals and robustness
with respect to normal environmental variations.
Azam et al. [133] take a similar approach using975

neural networks to dynamically model and monitor
fifty flight parameters. They discuss the difficulty of
using model-based approaches that cannot manage
the complexity of accommodating all reasonable pa-
rameters in all flight modes. Their data-driven ap-980

proach also provides estimates of fault severity.
Iverson et al. [132] and Schwabacher et al. [126,

136, 166] provide a highly detailed treatment of the
hybrid fault monitoring system certified by NASA
for International Space Station (ISS) operations985

and for Ares I-X launch pre-diagnostics. The In-
ductive Monitoring System (IMS) is a ground-based
ICPS that processes telemetry from the ISS in near
real-time. It relies on rule-based, Model-Based and
Data Driven algorithms in three distinct subsys-990

tems of the IMS. They employ a clustering ap-
proach from a fixed number of training points, an
approach that allows them to rapidly tailor IMS for
new situations. Schwabacher et al. note that there
is a need for mission-critical systems such as these995

to be flight-certified since ground controllers rely on
them to make go/no go decisions about launches.
They note that many Space Shuttle launches were
delayed due to unreliable fault diagnoses. When
launch faults can be evaluated more rapidly, redun-1000

dant or hot-swappable modules can be deployed to
reactivate launch sequences to meet critical time
windows.

Studies such as these help to explain the pro-
liferation of hybrid techniques encountered. In1005

aerospace, 54% used Artificial Neural Networks and
38% employed Machine Learning, coupled with a
range of Model Invalidation methods that were dis-
cussed in 43% of all aerospace studies.

5.2. Studies from the Automotive sector1010

The automotive ecosystem is built up of millions
of discrete, complex and mostly unconnected ICPS.

Each vehicle operates as a self-contained network of
co-operating subsystems. Stout’s Automotive De-
fect and Recall Report shows that in 2018, nearly1015

eight million vehicles were recalled in the US to
address software-based defects [167]. That total is
higher than all the recalls for software issues in the
previous five years. Figure 6 highlights where diag-
nostic research is focused in the automotive sector.1020
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Figure 6: Where diagnostic research is focused in the auto-
motive sector.

Modern vehicles feature up to 120 embedded
ECUs, connected by five or more system buses [168,
169]. Sarecco highlights how large and complex the
software is currently in vehicles, reporting that the
2017 Ford 150 pickup requires 150 million lines of1025

code [170]. Charet [171] contrasts this with the F-35
Joint Strike Fighter that required only 5.7 million
lines of code while the Boeing 787 Dreamliner uses
only 6.5 million lines.

This complexity is reflected in the automotive1030

survey papers at the highest TRL. Nasri et al [172]
explain that the increasing sophistication of in-
car electronics, including Adaptive Cruise Control,
Lane Detection and Light Detection And Ranging
(LIDAR) technologies, leads to more intricate fault1035

scenarios. They detail the implementation of diag-
nostics that analyse messages flowing between sub-
systems on the vehicles Controller Area Network
(CAN). Many of the current diagnostic tools rely
on proprietary software from vendors that are not1040

easy to integrate into system-wide diagnostic frame-
works. They detail their implementation of a hier-
archical chain of localised diagnosers that are mon-
itored by a single global fault analyser. A Directed
Graph approach is used to identify faults, capturing1045

CAN messages via hardware-in-loop connections.

The scope of what is deemed a “safety-
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critical” component in the automotive sector is also
changing. In May 2018, back-up cameras became
mandatory on US vehicles, transforming an op-1050

tional luxury item into something that required
much more rigorous quality control and deeper ve-
hicle integration [167].

Over-the-Air (OTA) access to diagnostic data
from automobiles is profiled as one route to address-1055

ing the difficulty of fault-finding in disconnected
automotive ICPS. The global remote diagnostics
market is forecasted to grow at 17% annually over
the next five years, driven primarily by the poten-
tial operational cost savings to automakers [173].1060

Steinkamp et al. describe General Motors new OTA
system which is capable of handling 4.5 TB of data
per hour from vehicles [167].

However, Dragojevic et al. [174] identify remote
access to diagnostic data from a vehicle as a signif-1065

icant technical challenge. Traditional automotive
architectures featured highly-specialized ECUs that
were optimized for minimal functionality to balance
safety concerns. Full operating systems for vehi-
cles emerged though middleware such as Adaptive1070

AUTOSAR [175], leading to greater opportunities
to aggregate diagnostic data that could be shared
with remote fault analysis systems. Without func-
tionality such as OTA, remote vehicle diagnostics
cannot be performed in an IIoT ecosystem. Drago-1075

jevic et al. profile their work on an OTA bridge
solution that connects with the on-board vehicle
network. However, they note that Adaptive AU-
TOSAR needs to encompass safety aspects to cer-
tifiable levels before it can be widely deployed.1080

Kane, Fuhrman and Koopman detail the use of
runtime monitor-based oracles that mine the data
used by OTA systems for fault finding [114]. Run-
time monitors analyze system traces to see if they
conform to acceptable behavior patterns. They1085

tune their oracles using large amounts of previously
captured telemetry and describe methods used dur-
ing live vehicle trials. Since monitors operate as
hardware-in-loop devices and often interact with
safety-critical components, they have to be de-1090

signed as high-integrity devices. They address this
by creating isolated monitors with well-defined in-
terfaces.

5.3. Studies from Manufacturing and Control

Unlike the automotive and aerospace sector, most1095

industrial systems are stationary in one location
and are therefore easier to connect into factory-wide

monitoring systems. Industrial production machin-
ery therefore offers numerous opportunities to per-
form local or remote diagnostics. Ramos et al cite1100

maintenance costs of up to 60% of the production
costs as a key driver for factory diagnostics and
prognostics [101]. Figure 7 highlights where diag-
nostic research is focused in the manufacturing and
industrial control sector.1105
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Figure 7: Where diagnostic research is focused in the indus-
trial control sector.

International, industry-wide initiatives foster
standardization across this sector. Chen et al. [91]
discuss trials of sensors for gearboxes in the context
of manufacturing initiatives such as the Machinery
Information Management Open Systems Alliance1110

(MIMOSA) [176]. Lee, Jin and Bagheri [2] dis-
cuss Industry 4.0 and Big Data as similar driver
of standardization. Their approach demonstrates
end-to-end factory machinery feeding sensor data
into multiple analytical systems for near real-time1115

fault identification and prediction. They employ
deep-learning for Data-Driven prognostics.

Ramos et al. [101] also profile Service Orien-
tated Architectures to expose fault-finding services
at multiple factory levels. Their case study focuses1120

on self-recovering machinery that is supported by
the factory infrastructure using hardware-in-loop
techniques. Manufacturing is typically managed by
multi-layer IT infrastructures that connect higher-
level Enterprise Resource Planning (ERP) through1125

layers down to factory automation systems such a
SCADA. Ramos et al. profile their eSonia system
which manages assets on multiple levels. Many pro-
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duction operations require assembly lines to be able
to be re-configured dynamically to suit changes in1130

demand. This requires a degree of self-awareness
from plant equipment, which must be able to sig-
nal if it is available when changes are requested.

6. Conclusions, gaps and future work

This scoping study was written with a view to1135

providing an overview of mature fault identifica-
tion and diagnosis techniques for practitioners who
are seeking to understand the state of the current
practice and who are creating ICPS. The wide use
of Model-Based (62%) and alternative Data-Driven1140

AI (33%) techniques across the aerospace, automo-
tive and industrial control domains reflects the com-
plexity of the current ICPS application space.

As the number of interconnected ICPS increases
along with the intricacy of the tasks they manage,1145

the use of Model-Based approaches alone was of-
ten profiled as becoming intractable. Milis [33] dis-
cussed the difficulties of calibration to align with
real systems. Scalability of models was also dis-
cussed in this context but only Yen et al [8] dis-1150

cussed partial models, a technique for segment-
ing models into sub-models. No studies profiled
Digital Twins as a solution. Model-Based diag-
nosis remains a viable strategy, yet how we create
complete-enough or partial models quickly and re-1155

liably remains a challenge. The AADL EV2 Error
Annex has potential to be used beyond the early
modeling stages however we found no evidence of
its use in the field.

Model-Free AI approaches were evidenced as a vi-1160

able way of addressing this challenge, demonstrat-
ing the increasing sophistication of current machine
learning systems. However, there was no discussion
of explainable AI, where the decisions made by al-
gorithms could be justified.1165

The proliferation of hybrid fault systems that
blend different aspects and techniques reached 19%
in the industrial control sector, indicating the im-
portance of further research into multiple-method
solutions, where models are tuned by real-time1170

data. Design-for-Certification was highlighted as
a significant driver to ensure products could be de-
ployed beyond the laboratory [174, 126, 151].

Predictive diagnostics is a promising area that
was often discussed in-context with the ability to1175

mine sensor data with enough granularity to allow
faults to be predicted. Predictive techniques were
prevalent in 30% of all industrial control studies,

driven by the availability of large amounts of lo-
cal data. Further research to develop remote con-1180

nectivity in the aerospace and automotive sectors
should lead to more powerful predictive capabili-
ties. However, the potential volume of the data
available from these ICPS also presents challenges
of scale.1185

Statistical aspects of Knowledge-based diagnos-
tic approaches were poorly represented across the
aerospace sector. Most applications of the tech-
nique in the automotive and industrial control sec-
tors discussed Bayesian approaches and various1190

Petri net derivatives. This may be due to the in-
creasing presence of hybrid approaches which em-
ploy Knowledge-Based methods in the midst of
other techniques. There was little evidence of tra-
ditional Expert Systems.1195

Connectivity is a key characteristic of ICPS yet
it has deeper implications in our sectors of interest.
Table 6 illustrates how connectivity for facilitating
diagnostics is made more challenging because of the
different environments ICPS operate in. Brief dis-1200

cussions in the papers of emerging cloud technolo-
gies pointed towards ways of establishing connec-
tivity in more achievable ways.

While the TRL analysis provided a way of iden-
tifying and profiling the most mature approaches,1205

those results cannot always be extrapolated across
all three sectors. Almost all the avionic and
aerospace studies profiled originated from organi-
zations who were partnering with agencies such as
NASA and ESA. These do not face the same intel-1210

lectual property restrictions that restrict what we
might expect to find published in the automotive
and industrial control sectors.

During our paper selection, promising papers
from the medical device ICPS sector gave a tan-1215

talizing glimpse of the differences and challenges
that sector presents. We look forward to exploring
that domain in a later study, where complex, safety-
critical devices and regulatory certification are the
norm rather than the exception.1220
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